EVALUATION OF THE EFFECTS AND CONSEQUENCES OF INACTIVITY DURING AND AFTER THE COVID-19 PANDEMIC

Authors

Keywords:

COVID-19, Physical Activity, Exercise, Health, Sport

Abstract

Since the emergence of the coronavirus, deaths have begun to increase rapidly. The weak immune system is shown as the most important factor in the death of individuals who cannot resist the coronavirus. The effects of COVID-19 on the immune system and the role of physical activity in this process represent a critical interaction on health. In this context, understanding this relationship reveals measures that can be taken to both reduce the effects of the disease and optimize immune system functions. For this reason, it is noteworthy that there are individuals who turn to nutrition and exercise programs to strengthen their immune systems. The right exercises are low and moderate-intensity exercises. The potential effects of COVID-19 on the cardiovascular system and the role of physical inactivity on cardiovascular health are critical for both epidemic and general health management. It is recommended that the heart rate should not exceed 130-140. In people exposed to the COVID-19 virus, physical activity should be suspended according to the body guide, and if necessary, it should be restarted in a non-severe way under the supervision of a doctor. With the impact of the pandemic, restrictions, and social isolation, individuals' physical activity levels may decrease, but maintaining or improving healthy living habits during this period can have positive effects on both physical and mental health. Both healthcare professionals and individuals need to understand the systemic effects of lack of physical activity and the disease-causing muscle weakness, pain, and other musculoskeletal problems.

References

Arslan, E., Ercan, S. (2020). Significance of exercise during COVID-19 pandemic and social distancing. Turk J Sports Med, 55(2), 188-191. doi: 10.5152/tjsm.2020.190.

Bakan, S., Deveboynu, Ş. N., & Tayhan Kartal, F. (2020). The effect of antioxidant vitamins on immunity in the COVID-19 pandemic. Eurasian Journal of Health Sciences, 3 (COVID-19), 140-148.

Blocken, B., Malizia, F., van Druenen, T., & Marchal, T. (2020). Towards aerodynamically equivalent COVID-19 1.5 m social distancing for walking and running. Eindhoven: Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology. http://www.urbanphysics.net/Social%20Distancing%20v20_White_Paper.pdf

Bonow, RO., Fonarow, GC., O’Gara, PT., Yancy, CW. (2020). Association of Coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol, 5(7), 751–753. doi:10.1001/jamacardio.2020.1105

Booth, FW., Gordon, SE., Carlson, CJ., Hamilton, MT. (2000). Waging war on modern chronic diseases: Primary prevention through exercise biology. J Appl Physiol, 88(2), 774-87. doi: 10.1152/jappl.2000.88.2.774

Bowden, Davies, KA., Pickles, S., Sprung, VS., Kemp, GJ., Alam, U., Moore, DR., Tahrani, AA., Cuthbertson, DJ. (2019). Reduced physical activity in young and older adults: Metabolic and musculoskeletal implications. Ther Adv Endocrinol Metab, 10, 1-15. doi: 10.1177/2042018819888824

Damiot, A., Pinto, AJ., Turner, JE., Gualano, B. (2020). Immunological implications of physical inactivity among older adults during the COVID-19 pandemic. Gerontology, 66(5), 431-438. doi: 10.1159/000509216

Dinh-Xuan, AT., Hua-Huy, T., Günther, S. (2023). Physical activity, COVID-19, and respiratory comorbidities: The good, the bad, and the ugly. J Sport Health Sci, 12(2), 216-218. doi: 10.1016/j.jshs.2022.12.009

Dogan, AA., Cengizhan, PA. (2021). Social insulation during COVID-19: The importance of physical activity. Turk J Sports Med, 56(1), 51-55. http://dx.doi.org/10.47447/tjsm.0462

Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, EK., Lanctôt, KL. (2010). A meta-analysis of cytokines in major depression. Biol Psychiatry, 67(5), 446-57. doi: 10.1016/j.biopsych.2009.09.033

Dres, M., Demoule, A. (2018). Diaphragm dysfunction during weaning from mechanical ventilation: An underestimated phenomenon with clinical implications. Crit Care, 22, 73. https://doi.org/10.1186/s13054-018-1992-2

Dumford, AD., Miller, AL., Lee, CK., Caskie, A. (2023). Social media usage in relation to their peers: Comparing male and female college students' perceptions. Computers and Education Open, 4, 100121. https://doi.org/10.1016/j.caeo.2022.100121

Gabutti, G., d'Anchera, E., Sandri, F., Savio, M., Stefanati, A. (2020). Coronavirus: Update related

to the current outbreak of COVID-19. Infect Dis Ther, 9, 241–253. https://doi.org/10.1007/s40121-020-00295-5

Gasmi, A., Noor, S., Tippairote, T., Dadar, M., Menzel, A., Bjørklund, G. (2020). Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol, 215:108409. https://doi.org/10.1016/j.clim.2020.108409

Gleeson, M., Bishop, N., Oliveira, M., McCauley, T., Tauler, P., Muhamad, AS. (2012). Respiratory infection risk in athletes: Association with antigen-stimulated IL-10 production and salivary IgA secretion. Scand J Med Sci Sports, 22(3),410-7. https://doi.org/10.1111/j.1600-0838.2010.01272.x

Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Zhan, J., Wang, S., Xie, Z., Zhuang, H., Wu, B., Zhong, H., Shao, H., Fang, W., Gao, D., Pei, F., Li, X., He, Z., Xu, D., Shi, X., Anderson, VM., Leong, AS. (2005). Multiple organ infection and the pathogenesis of SARS. J Exp Med, 202(3), 415-424. https://doi.org/10.1084/jem.20050828

Gumucio, JP., Qasawa, AH., Ferrara, PJ., Malik, AN., Funai, K., McDonagh, B., Mendias, CL. (2019). Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis. Faseb J, 33(7), 7863-7881. https://doi.org/10.1096/fj.201802457RR

Hamilton, MT. (2018). The role of skeletal muscle contractile duration throughout the whole day: reducing sedentary time and promoting universal physical activity in all people. J Physiol, 596(8), 1331-1340. https://doi.org/10.1113/JP273284

Hawley, JA., Hargreaves, M., Joyner, MJ., Zierath, JR. (2014). Integrative biology of exercise. Cell, 159(4), 738-749. https://doi.org/10.1016/j.cell.2014.10.02

Hiçerimez, A., Enç, N. (2021). Effects of COVID-19 on cardiovascular system and nursing care. Turk J Cardiovasc Nurs, 12(27), 59-67. doi: 10.5543/khd.2021.93723

Hughes, DC., Orchard, JW., Partridge, EM., La, Gerche A., Broderick, C. (2022). Return to exercise post-COVID-19 infection: A pragmatic approach in mid-2022. J Sci Med Sport, 25(7), 544-547. https://doi.org/10.1016/j.jsams.2022.06.001

Inciardi, RM., Lupi, L., Zaccone, G., Italia, L., Raffo, M., Tomasoni, D., Cani, DS., Cerini, M., Farina, D., Gavazzi, E., Maroldi, R., Adamo, M., Ammirati, E., Sinagra, G., Lombardi, CM., Metra, M. (2020). Cardiac involvement in a patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol, 5(7):819-824. doi: 10.1001/jamacardio.2020.1096

Jackman, RW., Kandarian, SC. (2004). The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol, 287(4), C834-C843. https://doi.org/10.1152/ajpcell.00579.2003

Ji, LL., Yeo, D., Kang, C. (2020). Muscle disuse atrophy caused by discord of intracellular signaling. Antioxid Redox Signal, 33(11), 727-744. https://doi.org/10.1089/ars.2020.8072

Karabulak, A. (2022). Investigation of the effects of physical activity habits on the process of passing COVID-19. İnternational Journal of Social, Humanities and Administrative Sciences, 8(56), 1121-1126. http://dx.doi.org/10.29228/JOSHAS.64447

Kuru Yasar., R., & Üstün Aytekin, Ö. (2021). Current overview of relationship between COVID-19 and nutrition. Academic Food, 19(1), 108-115. https://doi.org/10.24323/akademik-gida.927735

Lake, MA. (2020). What we know so far: COVID-19 current clinical knowledge and research. Clin Med (Lond), 20(2), 124-127. https://doi.org/10.7861/clinmed.2019-coron

Laviano, A., Koverech, A., Zanetti, M. (2020). Nutrition support in the time of SARS-CoV-2 (COVID-19). Nutrition, 74:110834. https://doi.org/10.1016/j.nut.2020.110834

Lee, IM., Shiroma, EJ., Kamada, M., Bassett, DR., Matthews, CE., Buring, JE. (2019). Association of step volume and intensity with all-cause mortality in older women. JAMA Intern Med, 179(8), 1105-1112. doi: 10.1001/jamainternmed.2019.0899

Li, YC., Bai, WZ., Hashikawa, T. (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol, 92(6), 552-555. https://doi.org/10.1002/jmv.25728

Li, YC., Bai, WZ., Hirano, N., Hayashida, T., Taniguchi, T., Sugita, Y., Tohyama, K., Hashikawa, T. (2013). Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication. J Comp Neurol, 521(1), 203-212. https://doi.org/10.1002/cne.23171

Lightfoot, JT. (2011). Current understanding of the genetic basis for physical activity. J Nutr, 141(3), 526-530. https://doi.org/10.3945/jn.110.127290

Mandsager, K., Harb, S., Cremer, P., Phelan, D., Nissen, SE., Jaber, W. (2018). Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. JAMA Netw Open, 1(6):e183605. doi: 10.1001/jamanetworkopen.2018.3605

Marshall, M. (2023). How COVID-19 affects the brain. New Sci, 257(3424), 14-15. https://doi.org/10.1016/S0262-4079(23)00189-6

McKenzie, DC. (2012). Respiratory physiology: adaptations to high-level exercise. Br J Sports Med, 46(6), 381-384. https://doi.org/10.1136/bjsports-2011-090824

Morton, AB., Smuder, AJ., Wiggs, MP., Hall, SE., Ahn, B., Hinkley, JM., Ichinoseki-Sekine, N., Huertas, AM., Ozdemir, M., Yoshihara, T., Wawrzyniak, NR., Powers, SK. (2019). Increased SOD2 in the diaphragm contributes to exercise-induced protection against ventilator-induced diaphragm dysfunction. Redox Biol, 20, 402-413. https://doi.org/10.1016/j.redox.2018.10.005

Morris, JN., Crawford MD. (1958). Coronary heart disease and physical activity of work; evidence of a national necropsy survey. Br Med J, 2(5111), 1485-1496. https://doi.org/10.1136/bmj.2.5111.1485

Nieman, DC., Johanssen, LM., Lee J., Arabatzis K. (1990). Infectious episodes in runners before and after the Los Angeles Marathon. J Sports Med Phys Fitness, 30(3), 316-328.

Nieman, DC. (1994). Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc, 26(2), 128-139. doi: 10.1249/00005768-199402000-00002.

Norman, LG. (1958). The health of bus drivers: A study in London transport. Lancet, 2(7051), 807-812. https://doi.org/10.1016/S0140-6736(58)90373-8

Pan, A., Liu L., Wang C., et al. (2020). Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA, 323(19), 1915-1923. doi:10.1001/jama.2020.6130

Pekcan, GA. (2020). COVID-19 Pandemic: Role of dietitians and guidelines. Nutrition and Diet Magazine, 48(1), 1-9. https://doi.org/10.33076/2020.BDD.1395

Peker, AT., Taşkın, M., Vural, M., Çoruh, Y., Zengin, S. (2019). Examination of the relationship between some coordinative abilities of children wrestlers. Sportive Outlook: Journal of Sports and Educational Sciences, 6(2), 132-142. https://doi.org/10.33468/sbsebd.97

Pette, D. (2001). Historical Perspectives: Plasticity of mammalian skeletal muscle. J Appl Physiol,

(3), 1119-1124. https://doi.org/10.1152/jappl.2001.90.3.1119

Power, SK., Bomkamp, M., Ozdemir, M., Hyatt, H. (2020). Mechanisms of exercise-induced preconditioning in skeletal muscles. Redox Biol. 35, 101462. https://doi.org/10.1016/j.redox.2020.101462

Rabøl, R., Petersen, KF., Dufour, S., Flannery, C., Shulman, GI. (2011). Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci USA, 108(33), 13705-13709. https://doi.org/10.1073/pnas.1110105108

Rooney, BV., Bigley, AB., LaVoy, EC., Laughlin, M., Pedlar, C., Simpson, RJ. (2018). Lymphocytes and monocytes egress peripheral blood within minutes after cessation of steady state exercise: A detailed temporal analysis of leukocyte extravasation. Physiol Behav, 194, 260-267. https://doi.org/10.1016/j.physbeh.2018.06.008

Said, CM., Batchelor, F., Duque, G. (2022). The impact of the COVID-19 pandemic on physical activity, function, and quality of life. Clin Geriatr Med, 38(3), 519-531. https://doi.org/10.1016/j.cger.2022.04.003

Seçgin, R., Akyol, D. (2023). Nursing approaches for neurological findings developing in COVID-19 patients: Traditional systematic compilation. Journal of Intensive Care Nursing, 27(2), 86-93.

Siordia, JA, Jr. (2020). Epidemiology and clinical features of COVID-19: A review of current literature. J Clin Virol, 127, 104357. https://doi.org/10.1016/j.jcv.2020.104357

Smuder, AJ., Min, K., Hudson, MB., Kavazis, AN., Kwon, OS., Nelson, WB., Powers, SK. (2012). Endurance exercise attenuates ventilator-induced diaphragm dysfunction. J Appl Physiol, 112(3), 501-510. https://doi.org/10.1152/japplphysiol.01086.2011

Smuder, AJ., Morton, AB., Hall, SE., Wiggs, MP., Ahn, B., Wawrzyniak, NR., Sollanek, KJ., Min, K., Kwon, OS., Nelson, WB., Powers, SK. (2019). Effects of exercise preconditioning and HSP72 on diaphragm muscle function during mechanical ventilation. J Cachexia Sarcopenia Muscle, 10(4), 767-781. https://doi.org/10.1002/jcsm.12427

Singh, H. (1991). Science of sports training. New Delhi, D.V.S.

Singh, K. (2004). Comparision of selected coordinative abilities among sportsmen belonging to contact, semicontact and non-contact sports (Ph.D. Thesis). Lakshmibai National Institute of Physical Education Deemed University Degree of Doctor of Philosophy in Physical Education, India.

Sönmez, NN., Beyhan, Y. (2021). COVID-19: Nutrition strategies, guidelines and recommendations.

Halic Uni J Health Sci, 4(3) 159-171 doi: 10.48124/husagbilder.900056.

Sribhutorn, A., Phrommintikul, A., Wongcharoen, W., Chaikledkaew, U., Eakanunkul, S., Sukonthasarn, A. (2016). The modification effect of influenza vaccine on prognostic indicators for cardiovascular events after acute coronary syndrome: Observations from an influenza vaccination trial. Cardiol Res Pract, 2016, 4097471. https://doi.org/10.1155/2016/4097471

Svendsen, IS., Hem, E., Gleeson, M. (2016). Effect of acute exercise and hypoxia on markers of systemic and mucosal immunity. Eur J Appl Physiol, 116(6), 1219-1229. https://doi.org/10.1007/s00421-016-3380-4

Taşkın, M. (2023). Factors affecting emergency aid and disaster management students' attitudes towards social media. Selçuk University Social Sciences Institute Journal, (52), 309-320. https://doi.org/10.52642/susbed.1349755

Taşkın, M., Çelik, NM., Soyal, M., Taşkın, AK. (2019). The effect of regular and irregular menstruatıon period on hand grip power. Kilis 7 Aralık University Journal of Physical Education and Sports Sciences, 3(1), 52-58.

Thompson, PD., Dec, GW. (2021). We need better data on how to manage myocarditis in athletes.

Eur J Prev Cardiol, 28(10), 1048-1049. https://doi.org/10.1177/2047487320915545

van Bakel, BMA., Bakker, EA., de Vries, F., Thijssen, DHJ., Eijsvogels, TMH. (2021). Changes in physical activity and sedentary behaviour in cardiovascular disease patients during the COVID-19 lockdown. Int J Environ Res Public Health, 18(22), 11929. https://doi.org/10.3390/ijerph182211929

Vassilakopoulos, T., Petrof, BJ. (2004). Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med, 169(3), 336-341. https://doi.org/10.1164/rccm.200304-489CP

Vina, J., Sanchis-Gomar, F., Martinez-Bello, V., Gomez-Cabrera, MC. (2012). Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol, 167(1), 1-12. https://doi.org/10.1111/j.1476-5381.2012.01970.

Yang, C., Jin, Z. (2020). An acute respiratory infection runs into the most common noncommunicable Epidemic-COVID-19 and cardiovascular diseases. JAMA Cardiol, 5(7), 743-744. doi: 10.1001/jamacardio.2020.0934.

Yang, J., Li, X., He, T., Ju, F., Qiu, Y., Tian, Z. (2022). Impact of physical activity on COVID-19. Int J Environ Res Public Health, 19(21), 14108. https://doi.org/10.3390/ijerph192114108.

Yuki, K., Fujiogi, M., Koutsogiannaki, S. (2020). COVID-19 pathophysiology: A review. Clin Immunol, 215, 108427. https://doi.org/10.1016/j.clim.2020.108427.

Yücel, D., Karakoç, E., & Yelken, B. (2022). Nutrition and COVID-19. Turkish Medical Students Research Journal, 3(2), 46-49.

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 395(10229), 1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3.

Wang, M., Baker, JS., Quan, W., Shen, S., Fekete, G., Gu, Y. (2020). A preventive role of exercise across the Coronavirus 2 (SARS-CoV-2) pandemic. Front Physiol, 11, 572718. https://doi.org/10.3389/fphys.2020.572718.

Woods, JA., Hutchinson, NT., Powers, SK., Roberts, WO., Gomez-Cabrera, MC., Radak, Z., Berkes, I., Boros, A., Boldogh, I., Leeuwenburgh, C., Coelho-Júnior, HJ., Marzetti, E., Cheng, Y., Liu, J., Durstine, JL., Sun, J., Ji, LL. (2020). The COVID-19 pandemic and physical activity. Sports Med Health Sci, 2(2), 55-64. https://doi.org/10.1016/j.smhs.2020.05.006.

WHO, (2023). https://www.who.int/emergencies/diseases/novel-coronavirus-2019. (Erişim Tarihi: 01.12.2023).

Downloads

Published

2023-12-22

How to Cite

Kenan Okludil. (2023). EVALUATION OF THE EFFECTS AND CONSEQUENCES OF INACTIVITY DURING AND AFTER THE COVID-19 PANDEMIC . International Journal of Sports Technology and Science, 1(1), 9–22. Retrieved from https://globsportsjournal.com/index.php/pub/article/view/11